An exact algorithm and a metaheuristic for the multi-vehicle covering tour problem with a constraint on the number of vertices
نویسندگان
چکیده
The multi-vehicle covering tour problem (m-CTP) involves finding a minimumlength set of vehicle routes passing through a subset of vertices, subject to constraints on the length of each route and the number of vertices that it contains, such that each vertex not included in any route lies within a given distance of a route. This paper tackles a particular case of m-CTP where only the restriction on the number of vertices is considered, i.e., the constraint on the length is relaxed. The problem is solved by a branch-and-cut algorithm and a metaheuristic. To develop the branch-and-cut algorithm, we use a new integer programming formulation based on a two-commodity flow model. The metaheuristic is based on the evolutionary local search (ELS) method proposed in [23]. Computational results are reported for a set of test problems derived from the TSPLIB.
منابع مشابه
Solving a bi-objective mathematical model for location-routing problem with time windows in multi-echelon reverse logistics using metaheuristic procedure
During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملA Reliable Multi-objective p-hub Covering Location Problem Considering of Hubs Capabilities
In the facility location problem usually reducing total transferring cost and time are common objectives. Designing of a network with hub facilities can improve network efficiency. In this study a new model is presented for P-hub covering location problem. In the p-hub covering problem it is attempted to locate hubs and allocate customers to established hubs while allocated nodes to hubs are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 226 شماره
صفحات -
تاریخ انتشار 2013